Wednesday, October 5, 2011

5 Reasons Roofs Fail

Bubble-like or long, thin raised areas on the roof are called blisters. Blisters are the most common roofing problem. They occur when a gas, usually water vapor, is trapped within the roofing system either between the plies or between the plies and the insulation. The heat of the sun during the day causes the gas to expand. The expansion of the gas creates a pressure within the system that pushes the plies apart, resulting in the blister.

Blisters would not occur if there were not some reason for moisture in the membrane. Two common ones are applying the roof to a damp substrate, as during a re-cover, and applying wet materials, such as felts, that have absorbed dew or rain on the edges. The moisture that causes blisters can often be traced back to another problem: improper storage of insulation, which allows water to soak through holes in shrink wrap or at the bottom of the stack where shrink wrap doesn’t cover. Moisture can also get into a roof installed in the presence of rain, snow or dew.

Open laps
Open laps in the field membrane, but especially in the flashings, are another problem. Open laps are just carelessness on the part of the installer. Usually it means that the installer has failed to apply adhesive to the entire lap. Sometimes it is caused in built-up and modified-bitumen systems when the bitumen is applied too cold. The laps appear to be closed, but open up as the roof ages.

In single-ply membranes, open laps are usually caused by improper surface preparation, such as adhering to a dirty membrane, heat welding at too cold of a temperature, not allowing the adhesive to dry properly or applying too much or too little adhesive.

The most common splits occur when a metal accessory is flashed with a membrane material. As the temperature changes, metals and membranes expand and contract at very different rates. Because the membrane generally cannot move as much as the metal, it will eventually fatigue and crack when it is adhered to metal. This problem is not as common with single-ply membranes with better expansion and contraction capabilities, but it is common in asphalt and coal tar systems.

Splits occur frequently in expansion joints. Contractors rarely know how to properly terminate an expansion joint cover. They run it to the wall and stop it dead. Unfortunately, the movement in the building does not stop at the end of the expansion joint and, consequently, it rips open any attempt to seal that edge. Splits are also common at joints within the expansion joint cover itself.

Splits are not limited to flashings, however. As most roofs age, they become more brittle and less resilient. This means that they become less resistant to movement from common sources such as temperature changes, foot traffic and substrate movement. Because the roof cannot flex or stretch as well as it did when new, it cracks.

The most preventable failure symptom, punctures usually occur because of carelessness on the part of people visiting the roof: HVAC technicians, window washers, painters, maintenance staff, smokers and tenants. Punctures can also occur because of debris left, blown or tossed on the roof. They may appear as tears or holes.

Another common failure location is penetrations. Of particular concern are pitch pans. There are three failures common to pitch pans: the sealer itself, the container in which it sits and the penetration to which the sealant is supposed to adhere. Almost all sealers used in pitch pans will crack eventually due to loss of plasticizer or aging. If the penetration is not stabilized, vibration or movement of the penetration can cause the sealant to crack around the penetration. If a penetration is not thoroughly cleaned of asphalt before installing pourable sealers, the sealer will not adhere to the penetration.

Other types of penetration flashings also can fail. Concrete curbs filled with sealer will crack if not fully supported underneath. Metal pans eventually rust and lose adhesion to the sealer. Rubber and plastic boots will deteriorate with ultraviolet radiation exposure. The sealant used at metal penetration flashings eventually deteriorates with exposure and may not seal to the penetration if the penetration has not been properly cleaned before installation. The penetration flashing may also leak if the wrong diameter flashing is used or the cover is not correctly installed.

Find a Contractor here

Patton Services | (309) 303-3128 | |

1 comment:

  1. Hey Randy, I got #6 for ya'. We do a lot of roof repair down here in Miami and the #1 cause of roof leaks is workmanship defect by the original roofers, lol!